Could the heat of the Earth’s crust become the ultimate energy source?

In a world where energy consumption is on the rise, our only hope is the development of new energy-generation technologies. Although currently used renewable energy sources such as wind and solar energy have their merits, there is a gigantic, permanent, and untapped energy source quite literally under our noses: geothermal energy.

Generating electricity from geothermal energy requires devices that can somehow make use of the heat within the Earth’s crust. Recently, a team of scientists at Tokyo Tech, led by Dr. Sachiko Matsushita, have made great progress in the understanding and development of sensitized thermal cells (STCs), a kind of battery that can generate electric power at 100C or less.

Several methods for converting heat into electric power exist, however, their large-scale application is not feasible. For example, hot-and-cold redox batteries and devices based on the Seebeck effect are not possible to simply bury them inside a heat source and exploit them.

Dr. Matsushita’s team have previously reported the use of STCs as a new method for converting heat directly into electric power using dye-sensitized solar cells. They also replaced the dye with a semiconductor to allow the system to operate using heat instead of light.

In short, electrons go from a low-energy state to a high-energy state in the semiconductor by becoming thermally excited and then get transferred naturally to the ETM.

Afterwards, they leave through the electrode, go through an external circuit, pass through the counter electrode, and then reach the electrolyte. Oxidation and reduction reactions involving copper ions take place at both interfaces of the electrolyte, resulting in low-energy electrons being transferred to the semiconductor layer so that the process can begin anew, thus completing an electric circuit.

However, it was not clear at that time whether such a battery could be used as a perpetual engine or if the current would stop at some point. After testing, the team observed that electricity indeed stopped flowing after a certain time and proposed a mechanism explaining this phenomenon. Basically, current stops because the redox reactions at the electrolyte layer stop owing to the relocation of the different types of copper ions.

Most importantly, and also surprisingly, they found out that the battery can revert this situation itself in the presence of heat by simply opening the external circuit for some time; in other words, by using a simple switch. “With such a design, heat, usually regarded as low-quality energy, would become a great renewable energy source,” states Matsushita.

The team is very excited about their discovery because of its applicability, eco-friendliness, and potential for helping solve the global energy crisis.

“There is no fear of radiation, no fear of expensive oil, no instability of power generation like when relying on the sun or the wind,” remarks Matsushita. Further refinements to this type of battery will be the aim of future research, with the hope of one day solving humanity’s energy needs without harming our planet.

Research paper

Related Links
Tokyo Institute of Technology

Powering The World in the 21st Century at Energy-Daily.com



Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.With the rise of Ad Blockers, and Facebook – our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don’t have a paywall – with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.


SpaceDaily Contributor

$5 Billed Once

credit card or paypal


SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only





ENERGY TECH
AI and high-performance computing extend evolution to superconductors

Lemont IL (SPX) Jun 03, 2019

Materials by design: Argonne researchers use genetic algorithms for better superconductors. Owners of thoroughbred stallions carefully breed prizewinning horses over generations to eke out fractions of a second in million-dollar races. Materials scientists have taken a page from that playbook, turning to the power of evolution and artificial selection to develop superconductors that can transmit electric current as efficiently as possible. Perhaps counterintuitively, most applied superconduc … read more


Leave a Reply